Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
IntroductionThe ‘social brain hypothesis’ proposes that brain development (particularly primates) is driven by social complexity, more than group size. Yet, small insects with minute brains are capable of the most complex social organization in animals - which warrants further attention. Research has focused on highly eusocial hymenopterans with extreme caste specialization and very large colony sizes that have passed social evolutionary points of no return. However, facultatively social insects that form small colonies (< 20 individuals) are likely to provide greater insight on brain selection at the origin-point of social group living. MethodsWe undertake the first neurobiological investigation of the facultatively social allodapine bees (Apidae: Xylocopinae: Allodapini), an exploratory study comparing single- and multi-female colonies ofExoneura angophorae. Using volume as a proxy for neural investment, we measured mushroom body calyces, optic lobes, antennal lobes and whole brains of queens, workers, and single-females to test three theories associating brain development with behavior: social brain hypothesis; distributed cognition hypothesis; sensory environment hypothesis. ResultsMushroom bodies were reduced in subordinate workers, but did not differ between queens and single-females. Workers had larger optic lobes than queens, but did not differ from single-females. There were no differences in antennal lobes or whole brain volume. DiscussionSocial caste, rather than multi-female versus single-female nesting, influenced mushroom body volume in this allodapine bee – counter to both social brain and distributed cognition theories and in alignment with halictine and ceratinine bees that also form small facultatively social colonies. Optic lobe enhancement is likely a response to dietary niche requirements for extra-nidal foraging behavior – which may be a highly plastic trait capable of rapid transition among allodapine and ceratinine bees that conforms with ecological intelligence hypotheses. These broad volumetric trends require further investigations on the functional neural circuitry involved in the aforementioned environmental contexts.more » « lessFree, publicly-accessible full text available June 10, 2026
-
Abstract Predicting insect responses to climate change is essential for preserving ecosystem services and biodiversity. Due to high daytime temperatures and low humidity levels, nocturnal insects are expected to have lower heat and desiccation tolerance compared to diurnal species. We estimated the lower (CTMin) and upper (CTMax) thermal limits ofMegalopta, a group of neotropical, forest-dwelling bees. We calculated warming tolerance (WT) as a metric to assess vulnerability to global warming and measured survival rates during simulated heatwaves and desiccation stress events. We also assessed the impact of body size and reproductive status (ovary area) on bees’ thermal limits.Megaloptadisplayed lower CTMin, CTMax, and WTs than diurnal bees (stingless bees, orchid bees, and carpenter bees), but exhibited similar mortality during simulated heatwave and higher desiccation tolerance. CTMinincreased with increasing body size across all bees but decreased with increasing body size and ovary area inMegalopta, suggesting a reproductive cost or differences in thermal environments. CTMaxdid not increase with increasing body size or ovary area. These results indicate a greater sensitivity ofMegaloptato temperature than humidity and reinforce the idea that nocturnal insects are thermally constrained, which might threaten pollination services in nocturnal contexts during global warming.more » « less
-
Prior work has identified the career ecosystem as a metaphor that represents the multilevel forces influencing individual careers, with the assumption that all individuals experience the ecosystem similarly. We explore how the career ecosystem might be differentiated for different groups of actors within it because of varying cultural and systemic forces. We focus on STEM careers as an exemplar to understand the contextual factors contributing to the low representation and high occupational turnover of women and other underrepresented groups. Based on the career ecosystem metaphor, we develop a multilevel model linking societal, organizational, and occupational cultures with individual career decision making and behavior in the STEM context and show how the resilience of the career ecosystem is different based on gender and racial/ethnic identity. Additionally, we propose ways to interrupt the ecosystem’s feedback loop to create a more resilient STEM career ecosystem for women and members of racial and ethnic minoritized groups.more » « less
-
Abstract Many insects show plasticity in the area of the brain called the mushroom bodies (MB) with foraging and social experience. MBs are paired neuropils associated with learning and memory. MB volume is typically greater in mature foragers relative to young and/or inexperienced individuals. Long-term studies show that extended experience may further increase MB volume, but long-term studies have only been performed on non-reproductive social insect workers. Here we use the subsocial beeCeratina calcaratato test the effect of extended foraging experience on MB volume among reproductive females.Ceratina calcaratafemales forage to provision their immature offspring in the spring, and then again to provision their adult daughters in the late summer. We measured the volume of the MB calyces and peduncle, antennal lobes (AL), optic lobes (OL), central complex (CX), and whole brains of three groups of bees: newly emerged females, reproductive females in spring (foundresses), and post-reproductive mothers feeding their adult daughters in late summer. Post-reproductive late summer mothers had smaller MB calyces and ALs than foundresses. Moreover, among late mothers (but not other bees), wing wear, which is a measure of foraging experience, negatively correlated with both MB and OL volume. This is contrary to previously studied non-reproductive social insect workers in which foraging experience correlates postiviely with MB volume, and suggests that post-reproductive bees may reduce neural investment near the end of their lives.more » « less
-
null (Ed.)ABSTRACT In social insects, changes in behavior are often accompanied by structural changes in the brain. This neuroplasticity may come with experience (experience-dependent) or age (experience-expectant). Yet, the evolutionary relationship between neuroplasticity and sociality is unclear, because we know little about neuroplasticity in the solitary relatives of social species. We used confocal microscopy to measure brain changes in response to age and experience in a solitary halictid bee (Nomia melanderi). First, we compared the volume of individual brain regions among newly emerged females, laboratory females deprived of reproductive and foraging experience, and free-flying, nesting females. Experience, but not age, led to significant expansion of the mushroom bodies – higher-order processing centers associated with learning and memory. Next, we investigated how social experience influences neuroplasticity by comparing the brains of females kept in the laboratory either alone or paired with another female. Paired females had significantly larger olfactory regions of the mushroom bodies. Together, these experimental results indicate that experience-dependent neuroplasticity is common to both solitary and social taxa, whereas experience-expectant neuroplasticity may be an adaptation to life in a social colony. Further, neuroplasticity in response to social chemical signals may have facilitated the evolution of sociality.more » « less
An official website of the United States government
